Scratch Raspberry Pi control
Pi Scratch V 2.73 B+ User Manual

Pridopia Limited
Tony Chang
29, Sep, 2014
Contents

1. Setting Scratch to active Mesh function .. 1
2. Download & Install Pi_Scratch software .. 7
3. Enable i2c & Install i2c .. 10
4. Other software pack install ... 12
5. Basic GPIO Function .. 18
 1. BASIC GPIO input & output demo ... 18
 2. BASIC GPIO step motor demo .. 20
 3. BASIC GPIO DC motor demo ... 21
 4. BASIC GPIO Servo motor demo ... 22
6. Demo 1 LED control & 2 DC Motor control .. 24
 (1) LED output Test include (GPIO 28,29,30,31) 24
 (2) 2 Motor forward, Backward, Left, Right control test 25
7. Demo 2 5 GPIO Switch & 16 PWM & 4 Motor Board demo 28
 (1) 5 GPIO Switch input GPIO 7,8,9,10,11 demo 28
 (2) PWM / Servo control demo ... 29
8. Demo 3 4hub/7hub i2c function board demo .. 31
 (1) i2c address 48 TMP102 temperature sensor test 32
 (2) i2c address 68 DS1307 RTC detect & demo 33
 (3) i2c address 20 23008 8 GPIO test ... 35
 (4) i2c address 49 ADC ds1015 4 channel input test 36
 (5) i2c address 50 EEPROM 24c32 read/write 37
 (6) i2c address 60 DAC MCP4725 demo .. 39
9. Demo 4 Stepper Motor and Relay control .. 40
10. Demo 5 Input & output test ... 42
11. Demo 6 Input & i2c 23017 16 GPIO & 16 LED output test 44
12. Demo 7 i2c 16 channel PWM & 23017 16 GPIO output test 47
 (1) Servo Motor control ... 47
 (2) PWM LED control .. 48
13. Demo 8 i2c 32 channel PWM /Servo Test .. 50
14. Demo 9 i2c 23017-4 64 GPIO & 64 LED output test 52
15. Demo 10 i2c 23017-2 32 GPIO & 32 LED output test 54
16. Demo 11 23017-2803 Switch input test .. 56
17. Demo12 spi 23s17 32/64 GPIO demo ... 58
 (1) spi 23s17-4 64 GPIO & 64 LED output test 59
 (2) spi 23s17-2 32 GPIO & 32 LED output test 59
18. Demo 13 spi 23s17-8 128 GPIO ... 60
19. Demo 14 Input &spi 23s17 16 GPIO & 16 LED output test 62
20. Demo 15 SPI MCP3002 & MCP4802 AD/DA demo 64
 (1) MCP3002 ADC 10 bit Analog-to-Digital Converter 64
 (2) MCP4802 DAC 8 bit Digital-to-Analog Converter 65
21. Demo 16 i2c 18bit MCP3424 ADC demo ... 66
22. Demo 17 i2c LED 24x16 & 16x16 Matrix .. 69
 (1) i2c 24x16 LED matrix ... 69
 (2) i2c 16x16 LED matrix ... 71
23. Demo 18 GPIO 84x48 LCD , 16x2 LCD, 20x4 LCD 72
 (1) 5 GPIO Switch GPIO 7,8,9,10,11 ... 72
 (2) 84x48 pixels monochrome LCD ... 73
 84x48 LCD RSS function ... 74
 84x48 LCD new command .. 76

Q & A

Pi_Scratch Install Q & A ... 153
How to Auto run Scratch & auto load Pi_Scratch example file 157
How to make Image from three ZIP file ... 159
First thing need do for Pi_Scratch ready Image .. 160
How to upgrade from old Pi_Scratch to new Ver Pi-Scratch 161
VNC (VIRTUAL NETWORK COMPUTING) setting 162
1. Scratch V1.4 Setting to Active Mesh function

1. Shift-click the upper part of the R in the Scratch logo.

2. Select "turn fill screen off".

3. You will now have a white area at the bottom and right side of the screen. Click on the white area and select "open...".

4. Now select "browser".

5. Now you've opened the System Browser! In this place you can edit Scratch.
5. Now you've opened the System Browser! In this place you can edit Scratch.

Go to Scratch-UI-Panes - ScratchFrameMorph - menu/button actions - addServerCommandsTo: .

6. Look down, and edit the "t2 ← true" to "t2 ← false".

7. Right-click and select "accept".

(or press middle key or wheel)

8. Enter in your initials (you can fake it, it doesn't matter) and click "accept".

9. Exit the System Browser.

10. Shift-click the R and select "turn fill screen on".
If you don't want to go through the process every time you want to use Mesh, you can save the System Browser so Mesh will stay available - Shift-click the R again and select “save image for end-user”.

If you don't want Mesh anymore, just change the ‘false’ back to 'true'.

Active Mesh
- Host Mesh lets you host a Mesh session.
- Join Mesh lets you join a Mesh session.

To host a Mesh session:
1. Click Host Mesh.
2. Done! Your IP address will show up.

To join a Mesh session:
1. Click Join Mesh.
2. Enter in the IP address of the Raspberry Pi that is hosting the Mesh session. (use “ifconfig” in terminal command line)

A Mesh session can have more than two Scratch programs connected at once - there's no limit! All Scratch programs have to connect to the same IP though.
Use "ifconfig" check the IP of Raspberry PI

Join Mesh “input Raspberry Pi IP” login from Desktop or Laptop

Download program pack from our web site

```
sudo wget http://pridopia.co.uk/pi-pgm/Pi_Scratch_v273.tar
or sudo wget http://pridopia.com/pi-pgm/Pi_Scratch_v273.tar
tar xf Pi_Scratch_v273.tar
cd Pi_Scratch_v273
```

You will find inside folder `Pi_Scratch_v273`
have 1 library folder `lib`
one WebIoPi-0.6.0 support DAC function
one installer folder include two python tools `Install-Without-Scratch.py` & `Install-Without-Scratch.py` for setting Auto Login & Auto Load Pi_Scratch
`Install-autorun-Scratch.py` - for auto run example without press any key
one Tools install all necessary program `install.py`
`RFID-Installer.py` Install RFID tools pack
one License document `LICENSE.txt`
one main program `Pi_Scratch_v273.py`
* set up the auto login & auto start manually.

setting Auto login -> startx -> Scratch -> load file for Pi_Scratch

1. Copy the two [.desktop] files to ~/.config/autostart/ and to the desktop at ~/.Desktop

You can use "sudo python Install-With-Scratch.py" this will help you create a folder and copy two files to the folder & install Auto login -> startx -> Pi_Scratch

You can use "sudo python Install-Without-Scratch.py" this will help you create a folder and copy two files to the folder & install Auto login

Two desktop files you can modify

Scratch-Handler

1. Make sure your I2C driver are enable

To enable it all you need to do is comment out a line by putting # in front

```
sudo nano /etc/modprobe.d/raspi-blacklist.conf
```

2. Add i2c-dev in /etc/modules by use

```
sudo nano /etc/modules
```

Scratch-File
3. Next install the python-smbus python module:

```
sudo apt-get install python-smbus
sudo apt-get install i2c-tools
```

Now you are ready to use the i2c with python.

If you already install I2c driver ,

```
i2cdetect -y 0        -  for Raspberry Pi V1 Board
```

```
i2cdetect -y 1        -  for Raspberry Pi V2 Board
```

install other necessary software package

use our `install.py` will help you install WebIOPi , spidev & RPIO

```
sudo python install.py
```

(1) install WebIOPi

goto folder “WebIOPi-0.6.0” → “Python” →
run the command:

```
sudo python setup.py install
```

(2) install spidev

```
sudo apt-get install git
```

Then install py-spidev:

```
git clone git://github.com/doceme/py-spidev
cd py-spidev/
```

```
sudo python setup.py install
```

(3) install GPIO Library

```
https://pypi.python.org/pypi/RPi.GPIO    GPIO library
```

GPIO library - RPi.GPIO-0.5.6.tar.gz

Install python , library and run the test program

```
# sudo apt-get install python-dev
# wget http://www.pridopia.co.uk/pi-pgm/RPi.GPIO-0.5.6.tar.gz
# gunzip RPi.GPIO-0.5.6.tar.gz
# tar –xvf RPi.GPIO-0.5.6.tar
# cd  RPi.GPIO-0.5.6
```

```
# sudo python setup.py install
```

(4) install RPIO 0.10.0

```
https://pypi.python.org/pypi/RPIO#downloads
```

```
# sudo apt-get install python-setuptools
# sudo easy_install –U RPIO
```

Install IR diver by manually

(5) LIRC module

```
# sudo apt-get install lirc
```

(6) python LIRC module

```
https://pypi.python.org/pypi/python-lirc/1.1
```

```
# sudo apt-get install python-lirc
```
finished all necessary software install.

```
sudo Pi_Scratch_v273.py
sudo Pi_Scratch_v273.py -d
```

in debug mode with more information display

1. Shift-click the Share in menu bar choose “Host Mesh”.

2. choose Host Mesh --- will appear a IP address windows

The Program will run in back ground detect all the device connect to Raspberry Pi. You can use Scratch with GPIO control function now.

*** For the first time use Pi_Scratch

Load “g17-g27demo.sb” demo program first, shift-click “Share ” → Host Mesh → will appear a IP address windows “Ok”

Then save this project in your pi again.

Next time you can load “g17-g27demo” the scratch will automatic connect our “Pi_Scratch”, with “Remote sensor connections enable” window, you don’t need choose “Host Mesh” every time”
*** You can run Scratch in PC use “Join Mesh”

To control Raspberry Pi (need IP for your Raspberry Pi)

Raspberry Pi in “Host Mesh”

Our "Pi_Scratch" for scratch V1.4 driver

The main goal for this software is towards helping children / beginner programmers / hardware enthusiasts build up their skills by doing simple tasks with even easier commands / controls.

Our Program need you active your scratch Mesh function & support the following products

- 4hub/7hub i2c RTC & Temperature sensor, AD/DA, EEPROM
- i2c 8,16,32,64,128 GPIO board
- spi 16,32,64,128 GPIO board
- GPIO relay, Motor, stepper Motor , 16x2 ,20x4 , 84x48 LCD Board.
- i2c servo board, 16x16 ,24x16 LED matrix
- 1-Wire DS18B20 Temp Sensor
- BMP085 Barometric Pressure/Temperature/Altitude Sensor
- Ultrasonic Distance Sensor
- i2c MCP3424 ADC , spi mcp3002/mcp4802 AD/DA
- DC motor ON/OFF clockwise/anticlockwise & speed
- Maplin Motor Robotic ARM
- New i2c & GPIO LCD command ** 8,Jan 2014
- DHT22 Digital Temperature & Humidity Sensor ** 14,Jan 2014
- IR- Line Hunting sensor, IR -Flame sensor ** 14,Jan 2014
- 6 DOF (Degrees of Freedom) Servo Robot Arm ** 17,Jan 201
- IR- PIR Motion sensor ** 20,Jan 2014
- i2c PWM LED control & GPIO LED control ** 24,Jan 2014
- IR Remote control Set ** 26,Febr 2014
- Motor wheel Encoder ** 05,Mar 2014
- i2c GPIO Motor wheel Encoder ** 14,Mar 2014
- 24x16 & 16x16 LED matrix new command update ** 17,Mar 2014
- RFID Reader & Relay Step Motor control ** 30,May 2014
- MPU6050 sensor 3 Axis Gyroscope ** 23,Jul 2014
- 8 DC Motor PWM control & RFID reader new update ** 26,Sep 2014

1. The Pi_Scratch use GPIO number (BCM) not raspberry pi pin number. so can support V2 P5 (GPIO 28,29,30,31) four extra GPIO pins.

2. example 1)define GPIO as input or output

 g17out ---> GPIO17 output (P1 pin 11)
 g17in --> GPIO17 input

2) set GPIO

 g17on --> GPIO17 on(High)
 g17off ---> GPIO17 off(Low)
Example: 1. G17out g27out (g17, g27 LED on off)

1. G17on g27off
 delay 2 sec
2. G17off g27on
 delay 2 sec
3. G17out g27off
 delay 1 sec
4. goto step 2

Example Program: g17-g27demo.sb
g17-g27demo.py

Example Program: RYG-LED-SW-demo.sb

1. define GPIO 23, 24 as input
2. define GPIO 4, 17, 27 as output
3. press sw2 yellow LED on 1 sec, then Red LED "ON" The Cat say "Red"
4. press sw1 Red LED off 1 sec, then Green LED "ON" The Cat say "Green"
2 BASIC function 2 BASIC GPIO Step Motor demo

command "SMOTORaInit" initial GPIO 17,18,27,22 as A Step Motor Port
command "SMOTORbInit" initial GPIO 23,24,25,7 as B Step Motor Port
command "SMOTOR" + speed (3-50) +(a or B) + output step
100 --- clockwise 100 step , -100 --- anticlockwise 100 step
a -- GPIO 17,18,27,22 , b -- GPIO 23,24,25,4

broadcast join SMOTOR aInit
broadcast join SMOTOR bInit
broadcast join SMOTOR 3a200
broadcast join SMOTOR 5a200
broadcast join SMOTOR 3b510
broadcast join SMOTOR 8b-100
3 BASIC function 3 BASIC GPIO DC Motor demo

command "GPIO number"+"pwm"+"speed" speed (0 ~ 100)
 g22pwm50 ==> GPIO 22 ON speed 50
 g22pwm100 ==> GPIO 22 ON full speed 100
 g22pwm0 ==> GPIO 22 ON speed 0 (STOP)

4 BASIC function 4 GPIO DC Servo Motor control demo

command "GSE"+"GPIO number"+"A"+"Angle"
 GSE29A80 ==> GPIO 29 Servo to 80 degree
 GSE29A120 ==> GPIO 29 Servo to 120 degree
 GSE31A90 ==> GPIO 31 Servo to 90 degree
 GSE31A200 ==> GPIO 31 Servo to 200 degree
Display the Servo Motor angle Degree Status

after command " GSE29A80 " ==> GPIO 29 Servo to 80 degree
command " GSE31A200 " ==> GPIO 31 Servo to 200 degree
in Sensing --> Slider , you will see the " GServo-29, & GServo-31" in the list

6. Demo1 - LED control & 2 DC Motor control
8GPIO in P1, 4GPIO in P5 output test

GPIO 17,18,27,22,23,24,25,4, --- p1 28,29,30,31 -- v2
p5 output demo use our L293D-2-P5 board, with 8 LED for P1, 4 LED for P5(28,29,30,31)

(1) LED output Test include (GPIO 28,29,30,31)

define GPIO 17,18,27,22,23,24,25,4 & 28,29,30,31 as output
1.send GPIO 17,18,27,22 LED "ON" & 28,29,30, 31 LED "ON"
GPIO 23,24,25,4 LED "OFF"
2. send GPIO 17, 18, 27, 22 LED "OFF" & 28, 29, 30, 31 LED "OFF"
GPIO 23, 24, 25, 4 LED "ON"
3. RETURN to step 1

(2) 2 Motor forward, Backward, Left, Right control test

![motor control diagram]

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 7</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Turn clockwise</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Turn anti-clockwise</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stop</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Stop</td>
</tr>
<tr>
<td>Low</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Stop</td>
</tr>
</tbody>
</table>

(1) Motor On Off + Speed control
- A - GPIO 17, 18 Motor A
- B - GPIO 27, 22 Motor B
- C - GPIO 23, 24 Motor C
- D - GPIO 25, 4 Motor D

Command "Motor Name" + "DM" + "speed"

speed (10 ~ 100) clockwise
speed (-10 ~ -100) anticlockwise
reset for DMotor (RDM - Reset DMotor)

- ADM100 DC Motor A full speed 100
- BDM100 DC Motor B full speed 100
- ADM50 DC Motor A speed 50
- BDM50 DC Motor B speed 50
- ADM-100 DC Motor A anticlockwise full speed 100
- BDM-100 DC Motor B anticlockwise full speed 100
- ADM0 DC Motor A stop
- BDM0 DC Motor B stop
(2) BASIC GPIO Motor on off control

define GPIO 17,18,27,22, as output
1. press keyboard " f " GPIO 17,27 LED "ON" & 18,22 LED "OFF"
car move forward
2. press keyboard " b " GPIO 18,22 LED "ON" & 17,27 LED "OFF"
car move backward
3. press keyboard " l " GPIO 18,27 LED "ON" & 17,22 LED "OFF"
car turn right
4. press keyboard " r " GPIO 17,22 LED "ON" & 18,27 LED "OFF"
car turn left
5. press keyboard " space " GPIO 17,27 LED "OFF" & 18,22 LED "OFF"
car STOP

2 Motor control demo code forward, backward, turn right, turn left. Stop
(2) PWM / Servo control demo

Command "SE" + "PWM (0-15)" + "a" + "angle" Address 41
se7a10 --> channel 7 servo move 10 angle address 41
se7a-10 --> channel 7 servo move -10 angle address 41
se0a10 --> channel 0 servo move 10 angle address 41
se0a-10 --> channel 0 servo move -10 angle address 41

2 Servo in channel 0 & channel 7

(3) Degree command

Command "DSE" + "PWM (0-15)" + "a" + "degree" Address 41

dse7a300 --> channel 7 servo move 10 angle address 41
dse7a120 --> channel 7 servo move -10 angle address 41
dse4a200 --> channel 0 servo move 10 angle address 41
dse4a350 --> channel 0 servo move -10 angle address 41

after command " DSE7A300 " ==> channel 7 Servo to 300 degree
command " DSE4A200 " ==> channel 4 Servo to 200 degree
in Sensing --> Slider, you will see the " Servo-4, & Servo-7" in the list
8. Demo3 4hub/7hub i2c function board demo

detect Temperature (i2c interface TMP102 - Temperature sensor) i2c ds1307 RTC, i2c 23008 8 GPIO, i2c 23c32 EEPROM, i2c adc ads1015 12bit Analog-to-Digital Converter

use our 4 USB Hub board with I2C RTC & TMP102 temperature sensor or RTC-Temp module board

20 -> MCP23008 48 -> TMP102 68 -> RTC DS1307
50 -> 24c32 60 -> MCP4725 49-> ADS1015

```
root@raspberrypi:~# i2cdetect -y 1

00: ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
10: ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
20: 20 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
30: ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
40: ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
50: 50 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
60: 60 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
70: ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
```

after broadcast "Update" in Sensing --> Slider , you will see the Temp in the list

i2c address 48 TMP102 temperature sensor test
(2) i2c address 68 DS1307 RTC detect & demo

if you can't detect RTC function in Scratch

```bash
GNU nano 2.2.6    File: /etc/rc.local

# By default this script does nothing.
#
# Print the IP address
_IP=$(hostname -I) || true
if [ "$_IP" ]; then
    printf "My IP address is \"$_IP\""
fi

echo ds1307 0x60 > /sys/class/i2c-adapter/i2c-1/new_device

exit 0
```

you have echo ds1307 in /etc/rc.local

```bash
root@raspberrypi:~# i2cdetect -y 1

0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

root@raspberrypi:~#  
```

in 0x68 address display "UU"

after broadcast "Update" in Sensing --> Slider , you will see the RTC in the list
"Year, Month, Day, Date, Hour, Minutes, seconds"

RTC information from Raspberry Pi i2c RTC module
send broadcast "rtc" then broadcast "update"

after broadcast "Update" in Sensing --> Slider, you will see the RTC in the list
"Year, Month, Day, Date, Hour, Minutes, seconds"

(3) i2c address 20 23008 8 GPIO test

1. command "ads1015init" initial ADS1015
2. after broadcast "Update" in Sensing --> Slider, you will see the ADC1, ADC2, ADC3, ADC4 in the list
(1) adc1 input & output to 23008 8 bit GPIO bit 1
 if adc1 < 2 23008 bit 1 LED "ON" 8pin20a1

(2) adc2 input & output to 23008 8 bit GPIO bit 7
 if adc2 < 2 23008 bit 7 LED "ON" 8pin20a7

(5) EEPROM i2c address 50 24c32 read/write

command "EEP" + start address x, start address y + " message"

--> EEP 0x00 0x00 pridopia eeprom test

The System will open a new screen for EEPROM editor, need waiting about 10 seconds
(6) DAC MCP4725 12bit Digital-to-Analog Converter
JP11 (AOUT, GND) i2c address 60
demo our 4Hub/7Hub AD/DA board, AD/DA module board

Command "4725init" initial DAC mcp4725
Command "4725out" + "voltage"
voltage range "DC 0.01V to DC 3.29V"
command "4725out2.73" DC output 2.73V

9 Demo4 Stepper Motor and Relay control
main program turn relay 1, on 2 off -> 1 off, 2 on cycle
press C Stepper Motor clockwise press A Stepper Motor anticlockwise
Press S Stop

when key pressed
forever
broadcast g23on g24off g25off g4on
wait 0.001 secs
broadcast g23off g24on g25on g4off
wait 0.001 secs
broadcast g23off g24on g25on g4off
wait 0.001 secs
broadcast g23on g24on g25off g4off
wait 0.001 secs
broadcast g23on g24off g25on g4on
wait 0.001 secs

when key pressed
forever
broadcast g23on g24on g25off g4off
wait 0.001 secs
broadcast g23off g24on g25on g4off
wait 0.001 secs
broadcast g23off g24on g25on g4off
wait 0.001 secs
broadcast g23on g24off g25on g4on
wait 0.001 secs
broadcast g23on g24off g25on g4on
wait 0.001 secs
broadcast g23on g24off g25on g4on
stop all

Command "4725init" initial DAC mcp4725
Command "4725out" + "voltage"
voltage range "DC 0.01V to DC 3.29V"
command "4725out2.73" DC output 2.73V
(2) Step Motor smotor command easy way

command "SMOTORainit" initial GPIO 17,18,27,22 as A Step Motor Port
command "SMOTORbinit" initial GPIO 23,24,25,7 as B Step Motor Port
command "SMOTOR" + speed (3-50) +(a or B) + output step
100 --- clockwise 100 step , -100 --- anticlockwise 100 step
a -- GPIO 17,18,27,22 , b -- GPIO 23,24,25,4

10. Demo5 Input & output test
1.Setting GPIO (17,18,27,22,23,24,25,4)
 as input control Switch 1 to 8 ,
2. broadcast "Update"
3. in Sensing --> Slider , you will see the GPIO 17,18,27,22,23,24,25,4
 in the list
Detect GPIO (17,18,27,22,23,24,25,4) switch status
Press GPIO17 input switch output to GPIO28 LED

11. Demo 6 Input & i2c 23017 16 GPIO & 16 LED output test
& Stepper Motor Test
1. Setting GPIO 17 as input control Switch 1
2. broadcast "Update"
3. in Sensing --> Slider, you will see the GPIO 17 in the list

(1) switch input & i2c 16 GPIO output

command "bit21aon" or "bit21bon"
i2c 23017 address 21 Port A/B 16LED all on
command "bit21aoff" or "bit21boff"
i2c 23017 address 21 Port A/B 16LED all off
or use "bit21a01100000" address 21 Port A bit 7,6 on
use "bit21a10011111" address 21 Port A bit 8,5,4,3,2,1 on
"i221a8" i2c address 21 port A bit 8 on
"i221a5" i2c address 21 port A bit 5 on
"i221b3" i2c address 21 port B bit 3 on
"i221b8" i2c address 21 port B bit 8 on
set GPIO17 as input, output to i2c Port A/B

2. Pink
4. Orange
5. Red
3. Blue

5V Step Motor

(2) Stepper Motor Test

press C address 21 GPIO Stepper Motor clockwise
press A address 21 GPIO Stepper Motor anticlockwise
Press S Stop
12. Demo 7 i2c 16 channel PWM & i2c 23017 16 GPIO output test

(1) Servo Motor control

Command "SE" + "PWM (0-15)" + "a" + "angle" for Address 41

- se7a10 --> channel 7 servo move 10 angle address 41
- se7a-10 --> channel 7 servo move -10 angle address 41
- se0a10 --> channel 0 servo move 10 angle address 41
- se0a-10 --> channel 0 servo move -10 angle address 41

(2) PWM LED control 16 channel LED control

- LED Scrolling Command
 PWMLED41S0E15D4True
 PWMLED "Address" S[Start channel] E[End channel] D[Delay / Timing] [True/False]
 Address 41, 42, 43, 44
 Start channel & End channel 0 ~ 15 16 channel
 D 1, 2, 3, 4, 5 (1 ~ 100) Delay Timing

- LED Brightness control Command
 PWMLED "Address" "B" "0 ~ 1000"
 PWMLED41B1000
 Stop command
 "PWMLED41STOP"
13. Demo 8 i2c 32 channel PWM Test

Command "SE"+ "PWM (0-15)" + "a" +"angle" Address 41
Command "SE"+ "PWM (0-15)" + "b" +"angle" for Address 40
se7a20 --> channel 7 servo move 20 angle address 41
se7a-20 --> channel 7 servo move -20 angle address 41
se14b20 --> channel 14 servo move 20 angle address 40
se14b-20 --> channel 14 servo move -20 angle address 40
Command "DSE"+ "PWM (0-15)" + "a" +"degree" Address 41

dse7a300 --> channel 7 servo move 10 angle address 41

dse7a120 --> channel 7 servo move -10 angle address 41

dse4a200 --> channel 0 servo move 10 angle address 41

dse4a350 --> channel 0 servo move -10 angle address 41

after command " DSE7A300 " ==> channel 7 Servo to 300 degree

command " DSE4A200 " ==> channel 4 Servo to 200 degree

in Sensing --> Slider , you will see the " Servo-4, & Servo-7" in the list
Command "i2"+ "address(20-27)" + "a" +"bit(1 to 8)" for Port A
Command "i2"+ "address(20-27)" + "b" +"bit(1 to 8)" for Port B
Command "bit"+ "address(20-27)" + "a" +"bit(8 to 1)" for Port A
Command "bit"+ "address(20-27)" + "b" +"bit(8 to 1)" for Port B

i221a1 --> i2c address 21 Port A bit 1 ON/OFF
i220b7 --> i2c address 20 Port B bit 7 ON/OFF
i222b4 --> i2c address 22 Port B bit 4 ON/OFF
bit22b01010101 --> address 22 port B from bit 8 to 1 output --> 01010101
bit20a01010101 --> address 20 port A from bit 8 to 1 output --> 01010101
bit21aoff --> address 21 Port A all OFF/clear
bit23aclr --> address 23 Port A all OFF/clear

15. Demo10 i2c 23017-2 32 GPIO & 32 LED output test
Command "i2" + "address(20-27)"+ "a" + "bit(1 to 8)" for Port A
Command "i2" + "address(20-27)"+ "b" + "bit(1 to 8)" for Port B
Command "bit" + "address(20-27)"+ "a" + "bit(8 to 1)" for Port A
Command "bit" + "address(20-27)"+ "b" + "bit(8 to 1)" for Port B

i21a1 --> i2c address 21 Port A bit 1 ON/OFF
i22b4 --> i2c address 22 Port B bit 4 ON/OFF
bit22b01010101 --> address 22 port B from bit 8 to 1 output --> 01010101
bit21a01010101 --> address 21 port A from bit 8 to 1 output --> 01010101
bit21aoff --> address 21 Port A all OFF/clear
bit21b0ff --> address 21 Port B all OFF/clear
bit22aoff --> address 22 Port A all OFF/clear

16. Demo 11 23017-2803 Switch input test

i2c 32GPIO & 8 switch input

Command "i2" + "address(1-8)"+ "a" + "in" for Port A
Command "i2" + "address(1-8)"+ "b" + "in" for Port B
Address 20 --> 1 21 --> 2 22 --> 3 23 --> 4
Address 24 --> 5 25 --> 6 26 --> 7 27 --> 8
command "i22bin" initial address 21, Port B as input

(1) "i22bin" initial address 21, Port B as input
(2) broadcast "Update"
(3) in Sensing --> Slider , you will see the "I2C1B-0 ~ I2C1B-7" in the list

The demo use i2c 24x16 LED Matrix for output message
i2c TMP102 for temperature sensor
i2c 23017 address 21 port B for 8 switch input
i2c 23017 address 22 port A/B for output

17. Demo12 23S17 32 /64 SPI GPIO Board
spi 23s17-4 64 GPIO & 64 LED output test
spi 23s17-2 32 GPIO & 32 LED output test

U1 to U4 spi 23s17 address 40,42,44,46
U1 to U2 spi 23s17 address 40,42
40 --> 1 42 --> 2 44 --> 3 46 --> 4 48 --> 5 4a --> 6 4c --> 7 4e --> 8

Command "sp"+ "address(1-8)" + "a" +"bit(1 to 8)" for Port A
Command "sp"+ "address(1-8)" + "b" +"bit(1 to 8)" for Port B
Command "bits"+ "address(1-8)" + "a" +"bit(8 to 1)" for Port A
Command "bits"+ "address(1-8)" + "b" +"bit(8 to 1)" for Port B
sp1a1 --> spi address 1 Port A bit 1 ON/OFF
sp2b7 --> spi address 2 Port B bit 7 ON/OFF
sp3b4 --> spi address 3 Port B bit 4 ON/OFF

bits2b01010101 --> address 2 port B from bit 8 to 1
output --> 01010101
bits2a01010101 --> address 2 port A from bit 8 to 1
output --> 01010101
bits2aoff --> address 2 Port A all OFF/clear
bits2aclr --> address 2 Port A all OFF/clear

18. Demo13 spi 23s17-8 128 GPIO

U1 to U4 spi 23s17 address 40,42,44,46
U5 to U8 spi 23s17 address 48,4a,4c,4e

40 --> 1 42 --> 2 44 --> 3 46 --> 4
48 --> 5 4a --> 6 4c --> 7 4e --> 8

Command "sp"+ "address(1-8)" + "a" +"bit(1 to 8)" for Port A
Command "sp"+ "address(1-8)" + "b" +"bit(1 to 8)" for Port B
Command "bits"+ "address(1-8)" + "a" +"bit(8 to 1)" for Port A
Command "bits"+ "address(1-8)" + "b" +"bit(8 to 1)" for Port B

spl1a1 --> spi address 1 Port A bit 1 ON/OFF
sp5b7 --> spi address 5 Port B bit 7 ON/OFF
sp7b4 --> spi address 7 Port B bit 4 ON/OFF

bits2b01010101 --> address 2 port B from bit 8 to 1
output --> 01010101
bits8a01010101 --> address 8 port A from bit 8 to 1
output --> 01010101
bits2aoff --> address 2 Port A all OFF/clear
bits2aclr --> address 2 Port A all OFF/clear
19. Demo 14 spi 23s17-2 8 Switch input

Command "sp"+ "address(1-8)" + "a" +"in" for Port A
Command "sp"+ "address(1-8)" + "b" +"in" for Port B
command "sp1bin" initial address 40, Port B as input
broadcast "Update" in Sensing ---> Slider ,
you will see "SPI1B-0 ~ SPI1B-7" in the list
20. Demo 15 SPI MCP3002 & MCP4802 AD/DA demo

command "3002init" initial spi mcp3002
broadcast "Update" in Sensing ---> Slider ,
you will see "M3002-AD0, M3002AD1" in the list
(2) MCP4802 DAC 8 bit Digital-to-Analog Converter output JP1 (DA0,GND,DA1,GND)

broadcast join 4802 init

broadcast join 4802outa 1.02

wait 3 secs

broadcast join 4802outa 1.57

wait 3 secs

broadcast join 4802outb 0.07

wait 3 secs

broadcast join 4802outa 1.22

wait 3 secs

command "4802init" initial spi mcp4802

command "4802out" + (a or B) + output voltage

a -- DA0 , b -- DA1

(output voltage range 0.01 to 2)

21. Demo 16 i2c 18 bit MCP3424 ADC demo

MCP3424 U1 ~U4 --> 6c, 6d, 6e 6f
MCP23017 U13 U14 --> 21,22
Adc1 address 6c, 6d adc2 address 6e, 6f
command "3424adc1init" initial i2c mcp3424
broadcast "Update" in Sensing ---> Slider,
you will see "adc1-ch1" ~ "adc1-ch8" in the list

Adc1 address 6c, 6d adc2 address 6e, 6f
command "3424adc1init" initial i2c mcp3424
broadcast "Update" in Sensing ---> Slider,
you will see "adc1-ch1" ~ "adc1-ch8" in the list
and "adc2-ch1" ~ "adc2-ch8" in the list
22. Demo17 i2c 24X16 LED Matrix & 16x16 LED Matrix

(1)i2c 24x16 LED matrix

NEW COMMAND 14,Mar 2014 update
(6) command LED +"ram” Display RAM usage
(7) command LED +"stop” stop all display function
(8) command LED +"wifi ip” display WiFi IP
(9) command LED +"wifi ssid” display WiFi SSID
(10) command LED +"wifi sig” Display Wifi signal
(11) command LED +"RSS” RSS function on
(12) command LED +"RSSOFF” RSS function Off
(2)i2c 16x16 LED matrix

(1) command SLED+ "time" display Time & Date (3x5 font)
(2) command SLED+ "img" display 16x16 image
(3) command SLED + "message" display message
SLEDthis is led matrix demo --> display "this is led matrix demo"
(4) command “SLEDCLS” clean 16x16 screen
(5) command SPRINT + "message"
Maximum display message 5X7 4 character in 16x16 Matrix

NEW COMMAND 17,Mar 2014 update

(6) command LED +“ram” Display RAM usage
(7) command LED +“stop” stop all display function
(8) command LED +“wifi ip” display WiFi IP
(9) command LED +“wifi ssid” display WiFi SSID
(10) command LED +“wifi sig” Display Wifi signal
(11) command LED +“RSS” RSS function on
(12) command LED +“RSSOFF” RSS function Off

23. Demo18 GPIO 84x48 pixels monochrome LCD , GPIO 16x2 character LCD, GPIO 20x4 character LCD

our Rs-Pi LCD Master can plug-in 84x48 LCD, 16x2 LCD, 20x4 LCD

(1) 5 GPIO Switch GPIO 7,8,9,10,11

1.Setting GPIO 7,8,9,10,11 as input
2. broadcast "Update"
3. in Sensing -- > Slider , you will see the GPIO-7, 8, 9, 10, 11 in the list
(2) 84x48 pixels monochrome LCD

command "LCD8544 " + "init" initial 84x48 LCD
command "LCD8544 " + "con " + "(0 -255)" LCD contrast
command "LCD8544 " + "bl " + "on/off" LCD back light ON / OFF
command "LCD8544 " + "cls" clean screen
command "LCD8544 " + "X, Y " + "MESSAGE" Display message to LCD in location x,y
command "LCD8544 " + "X, Y " + "wip" Display WiFi IP to LCD in location x,y
command "LCD8544 " + "X, Y " + "eip" Display Ethernet IP to LCD in location x,y
command "LCD8544 " + "X, Y " + "time" Display Time to LCD in location x,y
command "LCD8544 " + "X, Y " + "date" Display Time to LCD in location x,y
command "LCD8544 init" initial GPIO 84x48 LCD
command "LCD8544 con 170" (0 -255)" LCD contrast
command "LCD8544 "rss"+ " speed" Active RSS function (need have internet)
LCD8544 rss 5 speed (1 to 20 - 1 is fast, 20 is slow)
command "LCD8544 rss off" stop RSS function
(3) 20x4 Character LCD

(1) command

command "LCD2004g " + "init" initial GPIO 20x4 LCD
command "LCD2004 " + "X , Y " + " MESSAGE" Display message to LCD in location x,y
command "LCD2004 " + "cls" clean screen
command "LCD2004 " + "bl " + "on/off" LCD back light ON / OFF
command "LCD2004 " + "X , Y " + " wip" Display WiFi IP to LCD in location x,y
command "LCD2004 " + "X , Y " + " eip" Display Ethernet IP to LCD in location x,y
command "LCD2004 " + "X , Y " + " time" Display Time to LCD in location x,y
command "LCD2004 " + "X , Y " + " date" Display Time to LCD in location x,y

(2) RSS function command "LCD2004g init" initial GPIO 20x4 LCD
command "LCD2004 bl on" Turn On LCD back light
command "LCD2004 "rss"+ " speed" Active RSS function (need have internet)
LCD2004 rss 5 speed (1 to 20 - 1 is fast , 20 is slow)
command "LCD2004 rss off" stop RSS function

(4) 20x4 Character LCD
RSS function (Scrolling text Display top 3 News message)
BBC world news RSS feed

Date & Time in first Line, 2,3,4 line show top 3 BBC RSS news
command "LCD2004 \"X, Y\" + \"ram\"" Display RAM usage in location x,y
command "LCD2004 \"X, Y\" + \"wifi\" + \"ip\"" Display WiFi IP in location x,y
command "LCD2004 \"X, Y\" + \"wifi\" + \"ssid\"" Display WiFi SSID in location x,y
command "LCD2004 \"X, Y\" + \"wifi\" + \"gsig\"" Display wifi signal with bar chart in location x,y
(5) 16x2 Character LCD

command "LCD1602g init" initial GPIO 16x2 LCD
command "LCD1602 " + "bl " + "on/off" LCD back light ON / OFF
command "LCD1602 " + "X , Y " + " wip" Display WiFi IP to LCD in location x,y
command "LCD1602 " + "X , Y " + " eip" Display Ethernet IP to LCD in location x,y
command "LCD1602 " + "X , Y " + " time" Display Time to LCD in location x,y
command "LCD1602 " + "X , Y " + " date" Display Time to LCD in location x,y

16x2 RSS function

RSS function (Scrolling text Display top 4 News message)
message format
Line1 -- > Time + message 1 + " ->-> " + Message 3 + Time
Line2 -- > Time + message 2 + " ->-> " + Message 4 + Time

BBC world news RSS feed
command "LCD1602g init" initial GPIO 16x2 LCD
command "LCD1602 bl on" turn on LCD back light
command "LCD1602 "rss" + " speed" Active RSS function (need have internet)
LCD1602 rss 8 speed (1 to 20 - 1 is fast , 20 is slow)
command "LCD1602 rss off" stop RSS function
(6) GPIO 16x2 LCD new command ** 08, Jan, 2014 update

command "LCD1602 " + "X , Y " + " ram " Display RAM usage in location x,y
command "LCD1602 " + "X , Y " + " wifi " + " ip " Display WiFi IP in location x,y
command "LCD1602 " + "X , Y " + " wifi " + " ssid " Display WiFi SSID in location x,y
command "LCD1602 " + "X , Y " + " wifi " + " gsig " Display wifi signal with bar chart in location x,y

24. Demo19 GPIO 84x48 LCD , i2c 16x2 LCD, i2c 20x4 LCD

our Rs-Pi i2c LCD Master can plug-in 84x48 LCD, 16x2 LCD, 20x4 LCD

(1) i2c 20x4 character LCD
command "LCD2004 " + "init" initial i2c 20x4 LCD
command "LCD2004 " + "X , Y " + " MESSAGE" Display message to LCD in location x,y
command "LCD2004 " + "cls" clean screen
command "LCD2004 " + "bl " + "on/off" LCD back light ON / OFF
command "LCD2004 " + "X , Y " + " wip" Display WiFi IP to LCD in location x,y
command "LCD2004 " + "X , Y " + " eip" Display Ethernet IP to LCD in location x,y
command "LCD2004" + "X , Y " + " time" Display Time to LCD in location x,y
command "LCD2004" + "X , Y " + " date" Display Time to LCD in location x,y

RSS function (Scrolling text Display top 3 News message)
BBC world news RSS feed
command "LCD2004 init" initial i2c 20x4 LCD
command "LCD2004 bl on" turn on LCD back light
command "LCD2004 "rss"+ " speed" Active RSS function (need have internet)
LCD2004 rss 5 speed (1 to 20 - 1 is fast , 20 is slow)
command "LCD2004 rss off" stop RSS function
(2) i2c 16x2 character LCD

- **Command**: "LCD1602 " + "init" initial i2c 16x2 LCD
- **Command**: "LCD1602 " + "X , Y " + " MESSAGE" Display message to LCD in location x,y
- **Command**: "LCD1602 " + "cls" clean screen
- **Command**: "LCD1602 " + "bl " + "on/off" LCD back light ON / OFF
- **Command**: "LCD1602 " + "X , Y " + " wip" Display WiFi IP to LCD in location x,y
- **Command**: "LCD1602 " + "X , Y " + " eip" Display Ethernet IP to LCD in location x,y
- **Command**: "LCD1602 " + "X , Y " + " time" Display Time to LCD in location x,y
- **Command**: "LCD1602 " + "X , Y " + " date" Display Time to LCD in location x,y

** ** new command 08,Jan,2014 update for address 21 only**

- **Command**: "LCD1602 " + "X , Y " + " ram" Display RAM usage in location x,y
- **Command**: "LCD1602 " + "X , Y " + " wifi" + " ip" Display WiFi IP in location x,y
- **Command**: "LCD1602 " + "X , Y " + " wifi" + " ssid" Display WiFi SSID in location x,y
- **Command**: "LCD1602 " + "X , Y " + " wifi" + " gsig" Display wifi signal with bar chart in location x,y
16x2 LCD RSS function

RSS function (Scrolling text Display top 4 News message)

message format
Line1 --> Time + message 1 + "->->" + Message 3 + Time
Line2 --> Time + message 2 + "->->" + Message 4 + Time

BBC world news RSS feed
command "LCD1602 init" initial i2c 16x2 LCD
command "LCD1602 bl on" turn on LCD back light
command "LCD1602 "rss"+" speed" Active RSS function (need have internet)
LCD1602 rss 8 speed (1 to 20 - 1 is fast, 20 is slow)
command "LCD1602 rss off" stop RSS function

(1) broadcast "LCD1602 init" for 16x2 LCD
broadcast "LCD2004 init" for 20x4 LCD
(2) after broadcast "Update"
in Sensing --> Slider, you will see the "I2C1, I2C2, I2C3, I2C4, I2C5, I2C6, I2C7, I2C8" in the list

89
(4) I2C & GPIO 20x4 LCD new command

- Command: "LCD2004 " + "X , Y " + "ram" Display RAM usage in location x,y
- Command: "LCD2004 " + "X , Y " + "wifi" + "ip" Display WiFi IP in location x,y
- Command: "LCD2004 " + "X , Y " + "wifi" + "ssid" Display WiFi SSID in location x,y
- Command: "LCD2004 " + "X , Y " + "wifi" + "gsig" Display wifi signal with bar chart in location x,y

Also work with I2C LCD module: "LCD2004A", "LCD2004B", "LCD2004C", "LCD2004D"

(5) Multi I2C 20x4 LCD demo

A = ADDRESS 24, B = ADDRESS 25, C = ADDRESS 26, D = ADDRESS 27

- Command: "LCD2004" + "init" initial I2C 20x4 LCD address 21
- Command: "LCD2004A" + "init" initial I2C 20x4 LCD address 24
- Command: "LCD2004B" + "init" initial I2C 20x4 LCD address 25
- Command: "LCD2004C" + "init" initial I2C 20x4 LCD address 26
- Command: "LCD2004D" + "init" initial I2C 20x4 LCD address 27

- Command: "LCD2004" "Address" + "X , Y " + "MESSAGE" Display message in location x,y
- Command: "LCD2004" + "address" + "cls" clean screen
- Command: "LCD2004" + "address" + "bl" + "on/off" LCD back light ON / OFF
- Command: "LCD2004" + "address" + "X , Y " + "wip" Display WiFi IP to LCD in location x,y
- Command: "LCD2004" + "address" + "X , Y " + "eip" Display Ethernet IP to LCD in location x,y
- Command: "LCD2004" + "address" + "X , Y " + "time" Display Time to LCD in location x,y
- Command: "LCD2004" + "address" + "X , Y " + "date" Display Time to LCD in location x,y
25. Demo 20 (1) 1-Wire 18B20 temp Sensor

VCC to 3.3V P1 pin1, Data to P1 pin7(GPIO4), GND to P1 pin6(GND)

Data & VCC we have one 10K SMD Resister

Command "TEMPB20" to active 1-wire in pin7(GPIO4)
1. broadcast "TEMPB20"
2. after broadcast in Sensing --> Slider, you will see the "Temp18B20" in the list
BMP085 is a kind of pressure sensor with high precision, low energy, which can be used in mobile devices. Its excellent performance makes the absolute precision reach the minimum 0.03 hPa, and it is with very low power consumption, only 3 µA. Sing powerful 8-pin ceramic leadless chip carrier (LCC) thin package, BMP085 can be connected directly with a variety of microprocessors through I2C bus.

Main features:
- Pressure range: 300 – 1100 hPa (at an altitude of 9000 meters to 500 meters)
- Supply voltage: 1.8V – 3.6V (VDDA) 1.62V – 3.6V (VDDD)
- LCC8 package: ceramic leadless chip carrier (LCC)
- Size: 5.0mm x 5.0 x 1.2mm
- Low consumption: 5 µA in standard mode
- High accuracy: resolution ratio is 0.06 hPa (0.5 meter) in low power consumption mode; 0.03 hPa (0.25 meter) in high linear mode
- Temperature output

1. Command "bmp085init" initial i2C bmp085 address 77
2. after broadcast "Update" in Sensing --> Slider, you will see the "EAlt" "Epressure" "ETemp" in the list
(3) Ultrasonic distance sensor (HY-SRF05) with 2channel Logic Level converter

- Use two GPIO Trig(T) Echo(E)
- Update --> check distance and update
- T28 --> Trig use GPIO28 E29 --> Echo use GPIO29

after broadcast "t28 e29 " & "Update"
T28 Trig in GPIO28 E29 Echo in GPIO29
in Sensing --> Slider, you will see the "UltraSonic" in the list

Python Sonic.py test program
(4) DHT22/AM2302 Digital Temperature & Humidity Sensor

Type: AM2302 /DHT22
Voltage range: 3.5V-6V DC Humidity range: 0%-100%RH
Temperature range: -40°C to 80°C
Humidity accuracy: ±2RH% Temperature accuracy: ±0.5°C
Size: 3*1.3*0.6 cm

1. broadcast "DHT22INIT" +"27" GPIO number
 in Sensing --> Slider , you will see the "DHT22-27Humidity" & "DHT22-27Temp" in the list

DHT22 python program

"sudo python dht22.py 4 " 4 is GPIO number (P1 pin7 GPIO 4) you can use other GPIO pin number
Intelligent Car Tracing Black/White Line Hunting Sensor

Description:

- VCC/OUT/GND pin connector
- Power Supply: 3.3V
- Working Current: 15-20mA at 3.3V
- Output electrical level signal: Low level when detecting objects/ high level when no objects/0 or 1 decides if objects exist)
- Dimensions: 1.81 x 0.39 x 0.35 inch / 4.6 x 1.0 x 0.9 cm

Broadcast "TRACEIRINIT" +"17" GPIO number & "TRACEIRINIT" +"18" in Sensing --> Slider, you will see the "TraceIR-17" & "TraceIR-18" in the list.
Python test program use GPIO 17, GPIO 18

Detect the black line & white area

Intelligent Car Tracing Black/White Line Hunting Sensor
connect to 23017 i2c GPIO Port B

Command "i2" + "address(1-8)" + "a" + "in" for Port A
Command "i2" + "address(1-8)" + "b" + "in" for Port B
Address 20 --> 1 21 --> 2 22 --> 3 23 --> 4
Address 24 --> 5 25 --> 6 26 --> 7 27 --> 8
command "i22bin" initial address 21, Port B as input

(1) "i22bin" initial address 21, Port B as input
(2) broadcast "Update"
(3) in Sensing --> Slider, you will see the "I2C1B-0 ~ I2C1B-7" in the list
broadcast "TRACEIRINIT" +"17" GPIO number & "TRACEIRINIT" +"18" in Sensing --> Slider, you will see the "TraceIR-17" & "TraceIR-18" in the list.

Python test program use GPIO 17, GPIO 18

`root@raspberrypi:/home/pi/# cd trace`
`root@raspberrypi:/home/pi/trace# dir`
`Trace.py`
`root@raspberrypi:/home/pi/trace# sudo python Trace.py`

No Pins Entered.
Enter Pin 1: 17
Pin 2: 18

LEFT 17 18 RIGHT
1 0
(7) IR Flame Sensor Module

Comparator chip LM393. Detects a flame or a light source of a wavelength in the range of 760nm-1100 nm. Detection angle about 60 degrees, it is sensitive to the flame spectrum. Accuracy adjustable

Operating voltage 3.3V-5V

Output
* DO digital switch outputs (0 and 1) * AO analogue voltage output
* power indicator and digital switch output indicator
* With a mounting screw hole * PCB size: 3.1cm x 1.5cm

Note: Please keep a distance with flame, high temperature maybe burn out the sensor module.

Interface Description (4-wire)
1 VCC: 3.3V-5V voltage
2 GND: GND
3 DO: board digital output interface (0 and 1)
4 AO: board analogue output interface

1.broadcast "3002init" & "g4in" GPIO 4 as input
2.in Sensing --> Slider, you will see the "GPIO-4" & "M3002-AD0" & "M3002-AD1" in the list
Pyroelectric PIR sensor, Fresnel
Low-power, static power 65uA
Wide voltage range, DC 5V-20V
Board small size 38 * 28mm (32 * 24 * mm)
Repeatable / not repeatable trigger mode selection
Easy to use, power + - signal output
7 m sensing range , 110 degree angle sensor
Electrical Parameters:
Operating voltage range of 5-20V DC voltage
65uA quiescent current, High output level 3.3 V / Low 0V
Non-repeatable trigger L trigger / H Repeat Trigger
PCB dimensions 38 * 28mm (32 * 24 * mm)

1. broadcast "pir" + "init" + "29" GPIO 29 as input
2. in Sensing --> Slider, you will see the "PIR-29" in the list
The PIR -29 value change between "0" & "1"
(8) i2c address 20 MCP23008 8 GPIO IR PIR Motion Sensor input test

(1) "i2c20in" initial address 20, Port A as input
(2) broadcast "Update"
(3) in Sensing --> Slider, you will see the "I2C0A-1 ~ I2C0A-8" in the list

The I2C0A-1 value change between "0" & "1"
(9) IR remote control

Download 3 Remote control setting files
lircd.conf .lircrc hardware.conf

Copy hardware.conf & lircd.conf to /etc/lirc

Copy .lircrc to /root
irw read information from remote control

irexec read information from remote control

Scratch setting demo

Command "LIRREMOTE" +"INIT" to active IR REMOTE CONTROL

1. broadcast "LIRREMOTE INIT"

2. after broadcast Press the key in remote control you want use in Scratch
in Sensing --> Slider , you will see the key you press in the list

irexec read information from remote control
(10) Motor Wheel Encoder

WheelEncoder.py Python command

Sudo python WheelEncoder.py 17 3 23

17 GPIO for Encoder 3 Rotation
23 Motor connect to GPIO 23
Command

I2MOTORDIS[Address][Bank][Encoder Pin]M[Motor Pin]R[Rotations]

I2MOTORDIS21A2M17R2

1. **Address = 20 - 27**, Address for the I2C
2. **DeviceBank = A or B** (Bank for the encoder)
3. **Encoder Pin = 1 - 8** (Pin number for the encoder)
4. **Motor Pin = GPIO Pin number for the Motor**
 For example our Motor Board use GPIO 17 & 18 control 2 Motor forward & backward
5. **Rotations = How many rotations you want the Motor to do before it stops.**
 Minimum input 0.2
The MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro in a single chip. It is very accurate, since it contains 16-bits analogue to digital conversion hardware for each channel. Therefore it captures the x, y, and z channel at the same time. The MPU-6050 is not expensive, since it combines both an accelerometer and a gyro.

Features
Name: MPU-6050 module (three axis gyro + three axis acceleration)
Use chip: MPU-6050
The power supply: 3-5 v (internal low voltage difference voltage stabilizing)
Communication: standard IIC communication agreement
Chip built-in 16 bit AD converter, 16 bits of data output
The gyroscope range: + 250 500 1000 2000 °/s
Acceleration range: ± 2 ± 4 ± 8 ± 16 g

Command " MPU6050" +"INIT" to active MPU6050
1. broadcast "MPU6050INIT"
2. broadcast "update"
3. in Sensing --> Slider , you will see the " MPU-X, MPU-Y, MPU-Z" in the list

The MPU-6050 sensor contains a MEMS accelerometer and a MEMS gyro in a single chip. It is very accurate, since it contains 16-bits analogue to digital conversion hardware for each channel. Therefore it captures the x, y, and z channel at the same time. The MPU-6050 is not expensive, since it combines both an accelerometer and a gyro.
26. Demo 21 i2c address 20 MCP23017 16 GPIO Step Motor

`smotor command`

```
command "i2smotor " + "address" + "port" +"mode" + "Step"
address 20 ,21 ,22, 23, 24, 25, 26, 27
port  a or b ( Port A or Port B)
mode 1 first 4 bit Step Motor A
    2  Step Motor B
    3  A & B move together  A clockwise , B anticlockwise
    4  A & B move together  A & B clockwise or anticlockwise
Step  500  anticlockwise 500 step
    -500  clockwise 500 Step
```

Full command `i2smotor21a1500`

Address 21, port A, Step motor A, anticlockwise, 500 step
27. Demo 22 GPIO LED control
8 + 4 LED control

| 4 Motor P5 Board | PSU Board |

broadcast	join	GPWMLED	join	A	$1
broadcast	join	GPWMLED	join	B	$10
broadcast	join	GPWMLED	join	C	$4
broadcast	join	GPWMLED	Z		

Command
GPWMLED“A” or “B” or “C” or “D”

A GPIO 17,18,27,22,23,24,25,4
B GPIO 28,29,30,31
C GPIO A + B
Z STOP LED flashing

S"speed 1 to 10" 1 fast 10 slow"

28. Demo 23 Maplin Robotic ARM control

Motor Board Power Board

Use 1.Rs-pi-L293D-3 6 Motor Board –
Control Robot Arm 5 Motor (M1,M2,M3,M4,M5)
2.Rs-Pi-Power Bank Multi-function Board
Use DC12V adapter, provide Raspberry Pi 5V and all the power for 5 DC Motor
3. Rs-Pi-4hub Hub i2c multi function Board
 Provide extra USB Hub & extra i2c function
1. Rs-Pi-12c LCD2004 Master Board
2. Rs-Pi-24x16 LED Matrix

First Layer 4 USB hub i2c multi function board
Second Layer 6 Motor Board
Third Layer Power Bank Board
I2cdevice list
20 -> MCP23008 48 -> TMP102 68 -> RTC DS1307
50 -> 24c32 60 -> MCP4725 49 -> ADS1015
21 -> MCP23017 70,71,72 -> i2c LCD2004 Master Board
77 -> BMOP085

(1) xWindows control mode
Use mouse & keyboard control in xWindows
cell 5 Motor (M1, M2, M3, M4, M5) and LED ON/OFF

(2) Scratch GPIO control mode
1. setting GPIO 17,18,27,22,23,24,25,4 as output
2. setting GPIO 28,29,31 as output
a KEY GPIO 28,29 M1 CLOCKWISE
s KEY GPIO 28,29 M1 ANTICLOCKWISE
w KEY GPIO 23,24 M2 CLOCKWISE
z KEY GPIO 23,24 M2 ANTICLOCKWISE
1 KEY GPIO 27,22 M4 CLOCKWISE
2 KEY GPIO 27,22 M4 ANTICLOCKWISE
3 KEY GPIO 25,4 M3 CLOCKWISE
4 KEY GPIO 25,4 M3 ANTICLOCKWISE
5 KEY GPIO 17,18 M5 CLOCKWISE
6 KEY GPIO 17,18 M5 ANTICLOCKWISE
(3) Scratch PWM command mode
Include I2C 20x4 LCD Screen & I2C 24x16 LED Matrix

A - GPIO 17,18 Motor A B - GPIO 27,22 Motor B
C - GPIO 23,24 Motor C D - GPIO 25,4 Motor D
E - GPIO 28,29 Motor E

command "Motor Name"+ "DM"+"speed"
speed (10 ~ 100) clockwise
speed (-10 ~ -100) anticlockwise

6 KEY GPIO 28,29 M1 CLOCKWISE
5 KEY GPIO 28,29 M1 ANTICLOCKWISE

3 KEY GPIO 23,24 M2 CLOCKWISE
4 KEY GPIO 23,24 M2 ANTICLOCKWISE

w KEY GPIO 27,22 M4 CLOCKWISE
z KEY GPIO 27,22 M4 ANTICLOCKWISE

2 KEY GPIO 25,4 M3 CLOCKWISE
1 KEY GPIO 25,4 M3 ANTICLOCKWISE

a KEY GPIO 17,18 M5 CLOCKWISE
s KEY GPIO 17,18 M5 ANTICLOCKWISE
29. Demo 24 Servo Motor Robot ARM control
6 DOF Manipulator Aluminum Robot Arm

![Servo-Arm program](image)

Servo Arm control in Scratch

![2 DOF Long Pan and Tilt Robot Joint](image)

3 set x 2 DOF Long Pan and Tilt Robot Joint
5 x MG995 Servo Motor
1 x Gripper set

Use servo channel 0,1,2,3,4, connect Servo 0 to 4

Command "SE"+ "PWM (0-15)" + "a" +"angle" for Address 41
Se4a10 --> channel 4 servo move 10 angle address 41
Se4a-10 --> channel 4 servo move -10 angle address 41
Se0a10 --> channel 0 servo move 10 angle address 41
Se0a-10 --> channel 0 servo move -10 angle address 41
30. Demo 25 RFID reader & Step Motor & Relay control

Install tools for RFID kit
In folder“ Installer”
Sudo python RFID-Installer.py

(1) GPIO (SPI) RFID Reader & GPIO Relay output
Raspberry Pi
V2 P1

![Diagram of GPIO and RFID Reader connections]
Scratch control demo

1) Command "RFID"+"INIT"+"0" for CE0
 or Command "RFID"+"INIT"+"1" for CE1

will initial SPI signal to active RFID Reader

2) you will see "LastRFID" & "RFID" in Sensors
scratch demo code

ADD RFID Card into data base
Press “space” key then scan your RFID card

Active with Step Motor and GPIO Switch input
31. Raspberry Pi B+ (B Plus) GPIO support

In Installer folder, type “python Install-With-Scratch.py”. System will auto detect model B+, and install Pi_Scratch for model B+
In “Pi_Scratch_v272-B” folder

Example 01- Setting GPIO as output

1. define GPIO 5, 6, 12, 13, 16, 19, 20, 21, 26 as output
2. send GPIO 5, 6, 12, 13, 16, 19, 20, 21, 26 LED "ON"
3. send GPIO 6, 13, 16, 20, 26 LED "OFF" & 5, 12, 19, 21 LED "ON"
4. send GPIO 6, 13, 16, 20 LED "ON" & 5, 12, 19, 21 LED "OFF"
Example 02- Setting GPIO as input

(1) "g5in g6in g12in g13in" setting GPIO 5, 6, 12, 13 as input pin
 "g16in g19in g20in g21in" setting GPIO 16, 19, 20, 21 as input pin
 "g26in" setting GPIO 26 as input pin

(2) broadcast "Update"

(3) in Sensing --> Slider, you will see the
 "GPIO-12, GPIO-13, GPIO-16, GPIO-19, GPIO-20, GPIO-21, GPIO-26, GPIO-5, GPIO-6" 9 GPIO in the list
32. Raspberry Pi B+ (B Plus) 8 DC Motor PWM & GPIO support

This board uses RS-Pi
GPIO 17, 18, 27, 22 for MA1, MB1
GPIO 23, 24, 25, 4 for MA2, MB2
GPIO 5, 6, 12, 13 for MA3, MB3
GPIO 16, 19, 20, 21 for MA4, MB4

(1) Scratch PWM command mode

A - GPIO 16, 19 Motor A B - GPIO 20, 21 Motor B
C - GPIO 5, 6 Motor C D - GPIO 12, 13 Motor D

command "BPM"+"Motor Name"+"speed"
speed (0) stop
speed (10 ~ 100) clockwise
speed (-10 ~ -100) anticlockwise

<table>
<thead>
<tr>
<th>Pin 1</th>
<th>Pin 2</th>
<th>Pin 7</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low</td>
<td>High</td>
<td>Turn clockwise</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>Low</td>
<td>Turn anticlockwise</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>Stop</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Stop</td>
</tr>
<tr>
<td>Low</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Stop</td>
</tr>
</tbody>
</table>

PWM mode command

GPIO Mode command
33. Raspberry Pi B+ (B Plus) EDU Learning Board support

first set traffic light Red (GPIO19), Yellow(GPIO13), Green (GPIO12)
,Switch 1(GPIO20)
second set traffic light Red (GPIO16), Yellow(GPIO21), Green (GPIO26)
,Switch 2(GPIO6)

1. Setting GPIO 19,13,12 as output for R,Y,G LED
2. Setting GPIO 16,21,26 as output for R,Y,G LED
3. Setting GPIO 20,6 as input for 2 Switch

BASIC traffic light demo
Pi_Scratch Install Q & A

1. When you type “python Pi_Scratch_v268.py -d”
 You see following message

 ![Screenshot of Terminal with Python command output]

 Type “python Install.py” install again

2. When you type “python Pi_Scratch_v268.py -d”
 You see following message

 ![Screenshot of Terminal with Python command output]

 Check your setting in /etc/modules by use
 `sudo nano /etc/modules`

3. Use manually start Pi_Scratch first, after everything working fine, then
 setting Auto login and auto start, use root first

 ![Screenshot of Terminal with nano editor open]

 `sudo nano /etc/modules`
4. When you type “python Pi_Scratch_v272-B.py -d”
You see following message

```
pi@raspberrypi:~/Pi_Scratch_v272
pi@raspberrypi $ cd /home/pi/Pi_Scratch_v272
pi@raspberrypi $ python Pi_Scratch_v272-B.py -d
Traceback (most recent call last):
  File "Pi_Scratch_v272-B.py", line 69, in <module>
    Bus = SMBus(SMBus1)
IDError: [Errno 13] Permission denied
pi@raspberrypi ~
```

Use “root” to login your Pi, because some of the software function need access your Pi

5. When you type “python Pi_Scratch_v268.py -d”
You see following message

```
root@raspberrypi:~/Pi_Scratch_v268
root@raspberrypi:~/Pi_Scratch_v268$ python Pi_Scratch_v268.py -d
Traceback (most recent call last):
  File "Pi_Scratch_v268.py", line 68, in <module>
    root = Tk()
    root = Tk()
```

Type “startx” first, the open “LXTerminal” type “python Pi_Scratch_v268.py -d”

6. When Manually start Pi_Scratch if you can’t see “Host Mesh” Choose “Stop Hosting Mesh” first,
How to auto run Pi_Scratch without press any key

Type "python Install-autorun-Scratch.py"
Will do the setting for you also copy the autorun.sb example file

Use Pi_Scratch_V271

When receive "startup" to active auto run example file

We now have the program auto run in presentation mode, but as mentioned earlier there is a pop-up message "Remote sensor connections enabled" that stop update information for sensor " it will update until you have clicked OK. This is something that needs to be turned off within the Scratch application, which is one of the hidden settings within Scratch.

After launching Scratch shift left-click on the R in the Scratch logo (top left) and choose "turn fill screen off". Click on the white area to the right or bottom of the screen and choose "Open" and "Browser". Navigate to the section Scratch-UI-Panes -> ScratchFrameMorph -> menu/button actions -> enableRemoteSensors and remove the line:

```
DialogboxMorph inform: 'Remote Sensor Connections Enabled' Localized
```

Then click with the centre mouse button (or Ctrl and left button) and choose Accept (s).

You can now remove the white space in Scratch by shift left click on the R in Scratch logo and choose Turn Fill screen on. Finally shift left click on the logo again and choose "save image for end-user"
How to use three zip file change to Image file

Use 7-Zip software

Copy three zip file into one new folder, use 7-zip, click right mouse key choose “Extract files”

Click “OK”

After finished, you will have Pi_Scratch-V268-n1.img

First thing need do for Pi_Scratch ready Image

Use the Pi_Scratch ready Image first thing you need do

```
sudo raspi-config
```

Choose 1 “expand Filesystem to Ensures that all of the SD card s
How to upgrade from old Pi_Scratch to new Ver Pi_Scratch

In old ver Pi_Scratch_268 folder --- remove auto-login auto run first

```
sudo python remove.py
```
then reboot

download new Ver Pi_Scratch

```
sudo wget http://pridopia.co.uk/pi-pgm/Pi_Scratch_v272.tar
tar xf Pi_Scratch_v272.tar
cd Pi_Scratch_v272
```

```
cd Installer
sudo python Install-autorun-Scratch.py
```
--- auto run example
without press any key - choose root
or

```
sudo python Install-with-Scratch.py
```
--- auto load example but
need click “ok” and “greeng flag” in scratch - choose root

Pi_Scratch-v272 ready Image information

Use Raspbian Wheezy 2014-06-20

ready to use Pi_Scratch_v272 with Auto Login & Auto Load Pi_Scratch
& SSH enable --

SSH enable -- user - root password : pi for 4GB SD card
TightVNCserver install password : pipipi --

Use `sudo vncpasswd` to change password

VNC (VIRTUAL NETWORK COMPUTING)

VNC is a graphical desktop sharing system that allows you to remotely control the desktop interface of one computer from another. It transmits the keyboard and mouse events from the controller, and receives updates to the screen over the network from the remote host. You will see the desktop of the Raspberry Pi inside a window on your computer. You’ll be able to control it as though you were working on the Raspberry Pi itself.

Type `tightvncserver` to start VNC control from PC Mac or iPad
VNC connect from iPad & iDevice

[Image of Mocha VNC interface]

VNC connect from Android Smart Phone / Tablet

[Image of Android device with VNC connection setup]

[Image of Raspberry Pi with VNC connection]

163

164
Pridopia Limited
The Special I/O Controller Cards World

http://www.pridopia.co.uk/ixx-rspi.html
Find all your needs for Raspberry Pi in one place - Pridopia

DC Motor Series
- Rs-Pi-L293D-3 6 Motor Board
- Rs-Pi-L293D-1 2 Motor Board
- Rs-Pi-L293D-3 6 Motor 20x LCD & 24 x16 LED Matrix Demo
- PWM LED set demo (Red, Green, Yellow, Blue)

RFID Reader
- Rs-Pi-RFID Reader & Relay & Step Motor control
- Rs-Pi-4 Relay & Step Motor Board
- Rs-Pi-LCD 24x16 Matrix Board
- Rs-Pi-Led 16x16 Matrix Board

LED Matrix
- Rs-Pi-P-HAB 3.3V Board (High-Altitude Balloon)
- Rs-Pi-P-HAB & GPS Antenna FM Antenna & USB SDR Encoder

Make Raspberry Pi More Easy!

Software for Scratch
http://www.pridopia.co.uk/rs-pi-set-scratch.html

Pridopia Limited
New Brook House
385 Allerton Road
Nottingham NG7 5LR
United Kingdom
TEL: 0844-2492899

4 USB Hub Series
- Rs-Pi-4 USB Hub + Multi-function i2c Board
- Rs-Pi-4 USB Hub + 32 GPIO(2c/SPI) Board

PWM / Servo Series
- Rs-Pi-7 USB Hub + Multi-function i2c Board
- Rs-Pi-16 channel PWM & 4 Motor - PSU Board
- Rs-Pi-4 channel203 SPI AD/DA - 1-Wire Multi-function Board
- Rs-Pi-2 Relay + Step Motor Board

i2c & SPI GPIO Board
- Rs-Pi-Multi-function 32 GPIO (2c/SPI) Board
- Rs-Pi-128 GPIO (2c/SPI) Board

Make Raspberry Pi More Easy!

Software for Scratch
http://www.pridopia.co.uk/rs-pi-set-scratch.html

Pridopia Limited
New Brook House
385 Allerton Road
Nottingham NG7 5LR
United Kingdom
TEL: 0844-2492899